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4 ‘ Abstract
4 ~
Nork dur1ng this period has been concerned with two aspects: 1)
—— e e i R S R e /ﬂ:m\ R
| ‘*control of traveling waves in structures and 2) further developments in

the control of distributed structures.
In modal control of traveling waves, the question can be raised

X whether actuator forces at points removed from a given disturbance can

v begin working before the arrival of the disturbance. This question is
prompted by the fact that modal forces begin acting at t = 0. However,
the modal forces are not the actual forces, although the actual actuator
forces are linear combinations of the modal forces. It is demonstrated
that these combinations are such that the control forces tend to

f concentrate in the immediate vicinity of the disturgénce and tend to

. /"”'\l

’ vanish at points removed from the disturbance (Ref. 1).
One problem in the control of distributed structures is that
control implementation must be carried out by discrete actuators. In
using direct feedback, whereby the sensors and actuators are collocated
and the actuator input depends only on the sensor output at the same
4 location, asymptotic stability can be virtually guaranteed. Problems
arise when one desires to place the closed-loop poles. It appears that
there is some incompatibility between direct feedback and pole place-

) ment. In particular, in placing the poles for a number of controlled i
modes, the possibility of destabilizing uncontrolled modes exists, (Ref. -_—.Egi::::h

f
2). This problem arises from the insistence on placing the poles . U

associated with the controlled modes and would not arise in direct '“\

feedback alone, i.e., without specifying the location of the poles in

‘ ]
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CONTROL OF TRAVELING WAVES IN FLEXIBLE STRUCTURES*

by

L. Meirovitch and J. K. Bennighof
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

SUMMARY

This paper is concerned with the control of a traveling wave in a
structure by the independent modal-space control method. It is demon-
strated that the control forces tend to concentrate in the immediate
vicinity of the disturbance, and there are virtually no control forces
acting at any point of the structure before the arrival of the
disturbance. Two numerical examples are included, one for a string in
transverse vibration and one for a beam in bending. Satisfactory
control was achieved in spite of the fact that only a finite number of

modes was retained for control.

’

1. INTRODUCTION
Modal control implies confro]]ing the motion of a flexible
strdcture by controlling its modes. To carry out the control task, it

is necessary first to derive the modal equations of motion, design the

* Supported in part by the AFOSR Research Grant 83-0017.




modal control forces and finally synthesize the actuator forces from the
modal control forces by means of a linear transformation [1].

Because the modes of vibration of a structure form a complete set,
a disturbance in the structure can be described to any degree of
accuracy by a linear combination of these modes by merely increasing the
number of terms [2]. Modal control amounts to determining and
implementing modal control forces designed to suppress the modes
excited. But, the modes of a structure are global functions, i.e., they
are defined over the entire domain of the structure. Moreover, any
given modal control force is only an abstract force, translating into an
actual force distributed over the entire domain and having the shape of
the mode in question multiplied by the mass distribution. However,
distributed control impiies an infinite-dimensional controller, so that
practical considerations dictate implementation of modal control by a
finite-dimensional controller. This, in turn, implies controliing a
finite number of modes only, raising questions on the effect of modal
truncation on the performance of modal control.

In structures likely to exhibit disturbances in the form of
traveling waves, which tend to be localized in nature, the question can
be rai§ed as to the suitability of representing local disturbances by a
finite number of modes, and more importantiy of Contro]11ng such
disturbances by a finite number of modal control forces. In particular,
if the control is to Se'imp1emented by a finite number of actuators
located throughout the structure, the question can be raised whether
these actuators will start working ‘n certain parts of the structure

before the disturbance has arrived yet. On the other hand, one can

NN )



conceive of the situation in which the actuator forces, which represent
Tinear combinations of all the modal control forces, combine in such a
way that they become significant only in the neighborhood of the
disturbance and tend to reduce to zero in areas removed from the
disturbance.

This paper is concerned with the control of a disturbance in the
form of a traveling wave by the independent modal-space control (IMSC)

method. It is shown that the only force actuators activated are those

«T iteTe S

in the immediate vicinity of the disturbance, and that there are
virtually no control fcrces acting at any point of the structure before
the arrival of the disturbance. Two numerical examples are included,
one for a string in transverse vibration and one for a beam in

bending. Satisfactory control was achieved in each case in spite of the
fact that only a relatively small number of modes were retained for

control.

2. INDEPENDENT MODAL-SPACE CONTROL
Consider a distributed parameter system whose behavior is governed
by the partial differential equation of motion {2]
Lu(P,t) + m(P) ’—zu—(%z-tl - £(P,t) (1)
at
subject to the boundaty cqnditions Bip(P,t) =0, i=1,2,...,p. Here,
L is a 1inéar, se]f-adjbint differential operator of order 2p, u{(P,t) is

the displacement, a function of the position P and time t, m(P) is the

distributed mass and f(P,t) is the distributed force. The B;'s are also

'I.'I\I._f‘_.'~f‘.fN-I'-'I.'fﬁd‘ >, '-f\‘.'.--’\‘.\ $f."¢'.'f\f‘;.ﬁv(';f‘;‘-.;,\-,‘,_;‘.‘;l - .-' e ",'f.:l .“.:{:‘.\- :._ ‘e ~‘, e ‘ AR '\‘_\\f-.f-




linear differential operators. The solution of the asscciated
eigenvalue problem consists of a denumerably infinite set of eigenvalues
A and the corresponding eigenfunctions @r(P) (r = 1,2,...). The

eigenvalues are the squares of the natural frequencies w. of the system,
2

An = wis and the eigenfunctions are orthogonal and can be normalized so
. r B _ _ 2
as to satisfy [m(P)e (P)o (P)dD = & _, fD¢r(P)L¢S(P)dD = A8 = W

where 6rs is the Kronecker delta.
By the expansion theorem [2], the displacement of the structure can
be expressed in terms of its modes by

u(P,t) =

0, (P)u (t) (2)
]

ne~-1sp

1
where u.(t) are the modal displacements. Using the standard approach,

we obtain the decoupled modal ordinary differential equations of motion

U (1) + wlu (8) = F (1), r= 1,2, (3)

il

f(t) =] s (PYF(P,t)dD, r = 1,2,... (4)
D

r

are the modal forces. In the independent modal-space control method
(IMSC), each modal force depends only on the corresponding modal dis-

placement and velocity [1]. Hence, for linear feedback,

£ (t) = lu (t),0 ()] = - gu (1) - hi (t) (5)

where g. and h,. are modal control gains.

'Implementation of- modal control without spiliover requires a

distributed control having the expression

4]

f(P,t) = m(P) o (P) f (t) (6)
- r r
r=]
¢ \r'f .r J‘ A RSO ) "a‘.v,:.( o .r a -P_I‘ -r NP P e ,.‘-_- .o _...; e N P e
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If the control is to be carried out by means of m discrete actuators,

9 the distributed control force can be written as

4 m '
f(P,t) = '21 Fj(t)d(P - Pj) (7)

-i . and, from Eq. (4), each modal force is given by

A fr(t) = ID ¢r(P)jg1 Fj(t)a(P - Pj)dD = jgl Fj(t)°r(Pj) (8)
: Letting f be the vector of modal forces and F the vector of actual

s forces, we can write

' f =B (9)

where the matrix B = [Brj] = [¢r(Pj)I is known as the modal partici-

. pation matrix. We can obtain the vector of actual forces from the

; vector of modal forces by writing

: F -8 (10)
E where B+ is the pseudo-inverse of B. If there are as many discrete

. actuators as controlled modes, then B is a square matrix. Then,
;? assuming that B is nonsingular, £q. (10) reduces to
: =67 (11)
) To generate the modal forces, we need the modal displacements and
i; velocities. We can extract them from the displacement and velocity

: profi]és using the expansion theorem

Y RORNS M(P)s, (P)u(P,t)dD

3 : L ‘ (12)
3 8.(1) = [ M(P)o (PYA(P.L)dD

[f we use n discrete sensors, then we can interpolate between the sensor

1 measurements to obtain the approximations G(P,t) and G(P,t). Then, we

=

L A |
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compute Gr(t) and ﬁr(t) by inserting G(P,t) and G(P,t) in Eqgqs. (12).
Alternatively, we note that at the sensor locations Pi,

(2]

u(P;,t) =

o (Pu(t) = o (PU(t) = 1,2,...,n (13)
r=1 N "

r1°r

where gT(Pi) is the infinite-dimensional vector of eigenfunctions eval-

uated at P = P,

; and u(t) is the infinite-dimensional modal vector.

Introducing the measurement vector y(t) with components y;(t) =

u(P;, t), we can rewrite Eqs. (13) as

i

y(t) = o'u(t) (14)
Then, if we truncate the modal vector g(t) so that its dimension is
equal to the number of scnsors, we can estimate the modal displacement
vector from

a(e) = @Dyt (15a)

where BS is a square truncated matrix ¢ and it represents the sensor
participation matrix. This is equivalent to using the lowest n modes tc
represent the displacement profile. Similarly, the estimated modal
velocity vector is

6 (1) = @Hy (15)

Finally, the modal equations of motion become
. 2 _ ~ ~ »:

Ur tu = fr = -g.u. - hrur (16)
In this paper, we use gains that minimize the performance functiona:
2
(

‘0

3= 7 (m(P)l(pst) + u(P,t)Lu(P,t) + RFZ(P,t)1dDdt (17)
5D

Using the expansion theorem, the minimization can be carried out for

each mode independently resulting in the gains [l]
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g = - o ol e )

(18)
_ 2 1 2, 1,1/2,1/2
hr = [-Zwr *Rt Zmr(wr + R) ]
If we have damping in the system, the partial differential equation

of motion becomes

Lu(p,t) + ¢ 2B 4 nipy iszgiil - £(P,t) (19)
where C is a differential operator. I[f, for some constants @y and %5
we have

C = alL + azm(P) (20)
then the modal equations of motion become

dr + (ului + az)fjr + wsur = f. (21)

so that the equations remain uncoupied. This special case of damping is

known as proportional damping.

3. MODAL CONTROL OF TRAVELING WAVES

In this paper, we examine the possibility of using IMSC to contrcl
traveling waves in flexible structures. In each case, we begin with
initial conditions describing a single, localized traveling disturbarce
in the structure. Because the modes of a distributed system form a set
that i§ complete in energy, any disturbance can be expressed as a lirear
combination of the modes, provfded a sufficiently large number of modes
is included.

We consider first the wave motion in a second-order system, such as
a string in transverse vibration, a bar in axial vibration, or a snaft

in torsiona) vibration. Then, we consider traveiing waves in fourth-
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order systems, such as a beam in bending vibration. In the first cas=,
the waves travel through the system without changirg shape; in the
second, the system is dispersive, so that the wave changes shape as it
travels. For both types of systems, we assume that there is internal
damping present in the system, and that this damping is proportional to
the local rate of strain in the material. In each case, we consider
first the globally optimal solution to the control problem obtained by
using distributed actuators. Although implementation of control by
means of distributed actuators may not be within the state of the art,
the globally optimal solution is valuable because it provides a
benchmark against which any other design can be measured. Then, we
consider control of the wave motion using a finite number of discrete
actuators, in which case only a limited number of the lower modes is
controlled. A comparison of the results obtained using discrete
actuators with the globally optimal solution demonstrates the
effectiveness of IMSC in controlling waves, even when only a smaill

number of discrete actuators is used.

i. Second-Order Systems
We consider a second-order system in the form of a string in trans-

verse vibration. Assuming that the system is undamped, the free vidra-

tion is governed by the partial differential equation [Ref. 3].

E 4 T2

N R u(x,t) . m 3 u(x,t) _ 0 (22)
> 1x2 at2

X )

.

4 where u(x,t) is the transverse dispiacement, T is the tension and m is
. the mass per unit length. Here the differential operator L s equal t2

R R R N P R T TR T .‘.-_:J
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- T a%/ax%. It is assumed in Eq. (22) that both T and m are constant.
If the string is of infinite length, it is easy to show that the
solution of Eq. (22) can be written in the form [3]

u(x,t) = Fl(x - vt) + F2(x + vt) (23)
_where Fy and F, are wave profiles traveling to the right and to the
left, respectively, with the wave velocity

v = y/T/m (24)
The transverse velocity is

u(x,t) = - P (x - vt) + v (x + vt) (25)
where primes denote differentiation with respect to the corresponding
arguments.

[f the string is finite and fixed at both ends, then u(x,t) must
satisfy the boundary conditions

u(0,t) = u(L,t) =0 (26)

The natural frequencies are

w_ = rn/i/mLz ’ r = 1,2,...

r

and the associated normalized eigenfunctions are

. raX "
¢r(X) = a— sSin _E— sy T = 1,2,... (28)

According to the exbansion theorem, Eq. (3), the displacement of the
string can be represented by a'linear combination of the eigenfunctions
of the form (2). Alternatively, at any instant in time, the motion can
be described by £q. (23) in terms of traveling waves, as long as the
boundary conditions are satisfied. These boundary conditions determine

how the wave is reflected at the ends of the string.
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Next, we add an external distributed force and distributed damping
that is proportional to the local strain rate, so that the partial

differential equation of motion becomes

2 3 2
-7 3 U!)Z(lt! - C 3 uixs:) +m 3 ui;’g = f(x,t) (29)
ax 94X 3 3

where C is assumed to be constant. Because damping is of the
proportional type [2], the eigenfunctions of the damped system are the
same as the eigenfunctions of the undamped system, although the
eigenvalues are different. Hence, inserting Eq. (2) with P = x into &q.
(29), multiplying by ¢S(x), integrating over the length of the string
and making use of the orthogonality relations, we obtain the independent
ordinary differential equations of motion

u.(t) + (cwi/r)ar(t) +wlu () = F (1), r=1.2,... (30)
where fr(t) = IB or(x)f(x,t) dx is the rth modal force. Here we note
that the damping factor is proportional to the natural frequency,
L = (C/ZT)mr (r = 1,2,...). Hence, we expect the higher modes to decay
more rapidly than the lower modes, which is confirmed by the observed
behavior.

[f the string has the initial displacement profile

‘ 1

5 (1 - cos 215) 0 <x <2
u(x,0) =

v (31)
0, A< x <L

~N

e

where A is the wave 1endth. then the initial modal displacements are

L 7t | 1
_2v2mL |1 - cos rma/L (32)

u (0) = fo mu(x,0)s (x) dx = =— l_d ] r2\2/L2J

R R S T S L L AP SOy
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If this initial disturbance is to travel to the right, then the trans-

verse velocity must be

. 2mX
- - —_— <
//Z sin ==, 0 < x

S A
u(x,0) = , (33)
0, A sx <L
and the modal velocities are
L .
u.(0) = | mi(x,0)e _(x) dx = 2 V3l AL ;"; L2 (34)
0 4 - r22°/L

Figure 1 shows the motion of the string with the above initial

H

conditions and with » = 0.1L. Here, eighty modes were used to model the
string. The value of C was chosen so as to give 0.1% damping in the
fundamental mode, and no control forces were applied. The effect of the
damping is to decrease the energy in the highest modes rapidly, so that
the disturbance profile loses its initial sharpness and its amplitude
decreases.

Next, we consider a distributed control force with a control effort
weighting factor of R = 0.2 in the performance index, Egq. (17). The
results are shown in Fig. 2. We observe from Fig. 2 that the control is
localized at the wave, although the control force is a linear combin-
ation of modal forces and each of the modal forces is distributed over
the entire domain. This demonstrates that IMSC can control localized
disturpances quite satisfactorily, because the control force tends to
concentrate around the disturbance and it travels with the wave.

. We also observe from Fig. 2 that the optimal control force is very
nearly equaj to a sca{;f multiple of the velocity, which is consistent
with the fact that energy dissipation is the control objective. This

control force causes the wave to essentially retain its shape as the

amplitude decreases. It turns out that we can vary the rate of decay of
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the wave by varying R. In this example, we selected the value of R so
as to be able to monitor the effect of the controls on the system as the
wave travels. In gener&i, R represents a penalty on the control and is
chosen by the analyst so as to produce desired system performance.

Figure 3 shows results obtained by using nine discrete actuators
and nineteen discrete sensors, all equally spaced, to control the lowest
nine modes of the string. The sensors measure the actual displacement
and velocity of the string at each sensor location. Then, these mea-
surements are used in conjunction with Egs. (14) and (15) to estimate
the corresponding modal displacements and velocities. The use of more
sensors than actuators allows much of the motion due to uncontrolled
modes to be filtered out. The modal control forces are calculated from
the estimated modal displacements and velocities using the gains
prescribed by Eqs. (18) and the actual actuator forces are calculated
using Eq. (11). In this example, we continue to model the lowest eighty
modes, so that we expect to see residual energy in uncontrolled modes,
observation spillover from uncontrolled modes and control spillover into
uncontrolled modes, at least to some degree. Here, we still consider
the effects of damping as in the previous two cases. The use of
discrete actuators causes the wave to lose its initial smooth shape with
time, although the disturbance-can still be identified as it travels.
Examining the plot cotresppnding to t = 0, it is clear that, as long as
the disturﬂance in the éystem is still localized, the control force
accompanies the disturbance. Comparing the rate of energy dissipation
with the damped but uncontrolled case of Fig. 1, we observe that

controlling only the Jowest nine modes increases the energy dissipaticn

. A . - AR AR N N A ';‘._‘\‘;.‘.:-C.':;"..:_‘f:\.:“:;l':‘i
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substantially. In the time increment between t = 0 and t = 0.4, damping
causes a 50% loss of energy in the uncontrolled case, while the discrete
actuator controls dissipéte an additional 14% by operating on the lowest
nine modes. As time progresses, the controls become essentially
inactive, indicating that motion in the lowest nine modes has been
annihilated. The strain rate damping then causes the remaining energy
to decay quickly. Hence, we conclude that the use of IMSC to control
only the lowest nine modes with discrete actuators and sensors is
effective in controlling this traveling wave.

In Fig. 4, we have plots of the modal contributions prfr(t) to the
actuator force vector E(t) at t = 0, where the vectors Qr qre the
columns of BT in Eq. (10), or of B-1 in Eq. (11). In this case, 8-1 was
used. Also, in each of these plots, we have sketched the corresponding
mode shape, to give an idea what the contributions would have been if
the actuators were distributed devices, instead of point actuators. The
last plot represents E grfr(t) at t = 0, which is recognized from Eq.
(9) as the actual actE;%or force vector F(t) at t = 0. This figure
brings out the fact that, although the modal forces are active at points
far away from the disturbance, these modal forces tend to cancel out at

these points. Hence, the actual forces, as exerted by the actuators,

tend to be concentrated in the-vicinity of the disturbance.

i1. FOURTH-ORDER SYSTEMS -
The motion of beams in undamped free vibration is governed by the

fourth-order partial differential equation [3]

4 2
f1 2006t g 2ulGt) L (35)
ER at
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where EI is the bending stiffness and m is the mass per unit length,
p both assumed to be constant. Here, L = EI 34/ax4. Equation (33) admits
¢ a solution in the form o? the wave motion
. u(x,t) = cos g% (x - vt) (36)
A _ where A is the wavelength and
v =& ET7m (37)
N is the wave velocity. Hence, if a given wave profile is resolved into
t
y sinusoidal components by Fourier analysis, each wave component will
)
" travel with a different velocity. It follows that the wave profile
o changes shape as it travels, so that the beam is dispersive [3].
7 If the beam is of length L with pinned ends, then the displacement
A
H must satisfy the boundary conditions
L
" 22u(0,t) _ 2%u(L,t)
u(0,t) = u(L,t) = 5 = -2 = (38)
ax ax
| The natural frequencies are
v 2 /EI
y w, = (re)" f—2 r=1,2,... (39)
" r mL4
3
and the associated normalized eigenfunctions are the same as for the
F. string, Eq. (28).
’ In the presence of distributed damping proportional to the local
¢ strain rate and a distributed control force, the partial differential
equation of motion becomes (4]
b 4 5 2
s 3 u(x,t) a"u(x,t) aTu{x,t) _
. El 3 +C =L+ m > fx,t) (40)

y ax ax at at
where C is the damping coefficient. The modal equations of motion can

be obtained by the same approach as for the string, and the equations
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are identical to Eqs. (30). However, in this case the damping factor

: for each mode is proportional to the square of the mode number, because
it is still proportional‘to the natural frequency. Hence, for a beam
with strain rate damping, the higher modes decay much faster than the
; ' lower modes.

We propose to control traveling waves on this pinned-pinned beam.
To this end, we assume that the initial conditions are such as to
produce a traveling wave. For a given initial displacement profile
producing a wave traveling to the right, the velocity profile is not as
easy to obtain as for the string, because waves of different wavelengths
travel with different velocities along the beam. We can determine the
velocity profile for a given displacement profile by finding the sinu-
soidal components of the displacement profile and stipulating that each
. component travels with its own velocity, depending on the wavelength
(see Eq. (37)), and that all components travel in the same direction.
[f a disturbance profile has zero amplitude at the boundaries, the beam
K. can be regarded as being infinite. Hence, we consider an infinite beam
v, and denote the coordinate along the length of the beam by y. If the
wave profile is initially even in y and is denoted by u(y,0), upon
taking the Fourier transform and then the inverse Fourier transform of

) the wave profile we have

@

u(y,0) = % jo[fé w(y,0) cos wy dy]| cos wy dw ' (41)

For a beam of stiffness £I and mass m, a wave component of the form

u(y,t) = cos w(y - vt) (42)

e
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travels with the wave velocity v = w/EIl/m. If all wave components are

traveling to the right, then we have

u(y,t) = % fo H’; u(y,0) cos wy dy] cos w(y - vt)dw (43)
and hence
u(y,0) = Zi%:ZE f; [f; u(y,0) cos wy dy] W% sin wy duw (44)

We choose a wave profile even in y and defined for positive y by

l - G(gf)z'rB (Z%)3 - 3(3‘%)4. 0 sys-;—

0, y=>2 5
Then, upon carrying out the integrations in Eq. (44), we obtain
24 /ET 2 1 - (Bh?)?
i(y,0) = _5_15_1m . 12(.%) + a(&yn|— 20
) 2y\2
T ( )\)
22, L+ Hf
<y
+ (1 + 355 )en 7 (46)

A

and we cbserve from Eq. (44) that u(y,0) must be odd in y. Because

u(y,0) approaches zero asymptotically, we start the wave at the center

of the beam, so that the boundary conditions (38) are largely satisfied.

Hence,' to describe the transformation from x to y, we let y = x - 1/2.
Once again we choose a beém of unit lTength, mass, and stiffness
with » = 0.1 and the damping constant C so as to produce about 0.1%
damping in the lowest mode. Again, we are modeling eighty modes to
represent the motion of the beam. Figure 5 shows the uncontrolled

motion of the beam with the initial conditions described earlier. In
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the time increment between t = 0 and t = 0.004, we notice that over 98%

of the energy disappears as the higher modes decay rapidly. Also, the
dispersive nature of the beam becomes obvious by observing how the wave
spreads out as it travels. The dispersion is more obvious in the
absence of damping, because a number of wavelets break away instantly
ahead of the wave. We observe that, because of this dispersion, the
traveling wave quickly becomes much less localized and with only a small
amount of damping it has the appearance of a beam vibrating in several
of its lowest modes.

In Fig. 6, we use distributed actuators to control all eighty of
the modeled modes with R = 0.0005. Here again we observe that the
globally optimal control is localized at the wave and is néar]y a scalar
multiple of the velocity.

In Fig. 7, nineteen sensors and nine actuators are again used to
control the wave, as in the case of the string. Again, R = 0.0005. If
we compare the controlled displacement and velocity profiles in Fig. 7
with those in Fig. 3, where discrete sensors and actuators are used to
control the string, we observe that the beam profiles are much smoother,
indicating less participation of the higher modes. This is because
there js less control spillover into the higher modes due to the
stiffness of the beam. Also, because the higher modes decay so much
faster, control spillover into the higher modes is dissipated rapidly.
In essence, the beam ;Efs 1ike a low-pass filter.

Comparing the rate of energy dissipation when discrete actuators
are used with the uncontrolled case, it is clear that IMSC is effective

in controlling the wave, even in time intervals so short that the wave
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has traveled only a short distance. Again we notice that the actuators

are only active in the immediate vicinity of the disturbance.

4. CONCLUSIONS

The numerical examples presented here demonstrate the effectiveness
of IMSC in controlling traveling waves in structures governed by second-
and fourth-order partial differential equations, in spite of the fact
that only a limited number of actuators were used. In general, a great
deal of higher-mode participation is needed to describe a highly
localized disturbance, but, as shown here, a small amount of material
damping dissipates a great deal of the energy in the higher modes, even
when the lower modes have negligible damping. Note that the traveling
single wave is not an ordinary occurrence, as it takes an unusual
excitation to produce it. It was used here for the purpose of
investigating the control force distribution in the case of a
disturbance in the form of a traveling wave. As demonstrated, the
control tends to be concentrated in the vicinity of the disturbance, and
there is no significant control action in areas where there is no

disturbance.
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Figure 1. Uncontrolled Wave Motion in a String.
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Figure 7. Discrete-Actuator Control of Wave Motion in a Beam with
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¢ Abstract: Control of structures can be carried out conveniently by

¥ modal control, whereby the structure is controlled by controlling its

modes. Modal control requires estimation of the modal states for feed-

DR XS

back, which can present a problem. One approach that does not require

modal state estimation is direct feedback control, which implies

3 collocated sensors and actuators. This paper examines some problems

¢

E encountered in direct feedback control of distributed structures in

conjunction with pole placement. A perturbation technique permits the

S

\ computation of control gains for multi-input systems. The paper demon-
'; strates that the difficulties experienced in using direct feedback in

y conjunction with pole placement are endemic to the approach.

.

? Key Words. distributed structures, modal control, direct feedback

. control, collocated sensors and actuators, pole placement, perturbation
E technique.
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1. INTROBUCTION

Structures represent distributed-parameter systems, described by
partial differential equations (Ref. 1). In some form or another,
control of structures is carried out by modal control, whereby the
structure is controlled by controlling its modes. Control of the entire
infinity of modes requires in general a distributed actuator and a
distributed sensor. If the control is such that the modes are coupled,
then determination of the control gains is not possible. However, a
solution is possible if the modes are controlled independently. Indeed,
the independent modal-space control method is able to produce a globally
optimal solution by preserving the independence of the modal equations
(Ref. 2). It is shown in Ref. 2 that the optimal independent modal-
space control can be implemented approximately by means of discrete
sensors and actuators.

Modal control requires estimation of the modal states for feedback.
This can present a problem, particularly for two- and three-dimensional
structures. One approach that does not require modal state estimation
is direct feedback control, whereby the control is carried out by
collocated sensors and actuators. Direct feedback implies a gain matrix
consisting of two diagonal submatrices, one for displacement and the
other for velocity feedback. The fact that the off-diagonal gains are
zero can be regarded as placing constraints on the controls. As a
result determination qf cqntro] gains by pole allocation or by optimal
control experiences dif%iculties.

This paper examines some of the problems encountered in the control
of distributed structures, concentrating on the problem of using direct

feedback control in conjunction with pole placement. A perturbation
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o technique permits the computation of control gains for multi-input
control. The paper demonstrates that difficulties experienced in using
direct feedback in conjunction with pole placement to control distri-

N buted structures are endemic to the approach and are not merely
mathematical in nature. The difficulties can be attributed to the
insistence on selecting the closed-loop poles in advance, as no problem
S exists if the control gains are selected first and the closed-loop

eigenvalues are computed later.

N 2. MODAL EQUATIONS

We are concerned with the problem of controlling a distributed

~l

structure whose behavior is governed by the partial differential

%
E equation (pde) (Ref. 1)

E Lw(P,t) + m(P)Q(P,t) = f(P,t), PeD (1)
'S where w(P,t) is the displacement of a typical point P inside domain D

i and at time t, £ is a homogeneous, self-adjoint, positive definite

.: differential operator, referred to as stiffness operator, m(P) is the

é mass density and f(P,t) is a distributed control force. The

displacement w(P,t) is subject to given boundary conditions to be

’ satisfied at every point of the boundary S of D.

"g The open-loop eigenvalue problem has the form

: Lo(P) = wlm(P)o(P), PeD (2)
¥ where ¢(P) is subject to given'boundary conditions. The solution of Eq.
y (2)'consists of a denumerably infinite set of eigenvalues uE, where w
fz are the natural frequencies, and associated eigenfunctions o (r =1,

;\ 2,...). The eigenfunctions are orthogonal and can be normalized so that
b (¢s,m¢r) = 8o (¢S,£ ¢r) = wgdrs, r,s =1,2,... (3a,h)
:
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. where ( , ) denotes an inner product. Using the expansion theorem (Ref.

1), the displacement w(P,t) can be expressed as the linear combination

' w(P,t) = § ¢.(P)a.(t) (4)
> ’ 1 7 r
» where qr(t) (r = 1,2,...) are generalized coordinates ordinarily known
. as modal coordinates. Similarly, we can expand the distributed force
f(P,t) in the series
) F(P,t) = J m(P)e (P)f (t) (5a)
’ 1 r r
L where
]
) fr(t) = (¢r(P),f(P,t)), r=12,... (5b)
are known as modal forces. Then, inserting Eqs. (4) and (5) into Eq.
E (1), multiplying through by °s(P)’ integrating over the domain D and
considering Eqs. (3), we obtain the modal equations
o - 2
3 qr(t) + “’rqr(t) = fr(t)’ r = 1’29~-- (6)
i We refer to control of a distributed structure by using Egqs. (6) to
Y
» control the modes of the structure as modal control.
“
: 3. MODE CONTROLLABILITY AND OBSERVABILITY
N It will prove convenient to cast the modal equations in state form.
oa
To this end, we define the rth modal state vector xr(t) = [qr(t) dr(t)]T.
K ~
3 Then, adjoining the identities 4 (t) = 4 (t) (r = 1,2,...), Egs. (6) can
”
4 be written in the state form
§r(t) = Arfr(t),+ grfr(t)’ r=1,2,... (7)
. where '
. 0 1 0
Ar = 2 ’ E}r = , T =1,2,... (8a,b)
-ul 0 1
. are coefficient matrices. Next, we define the modal controllability
:2 matrix
s
5
S
S
Ud
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; C.-(8. ABI-= . or= 1,2, (9)

A X

and state that the distributed system is modal-state controllable if and

o

only if each and every controllability matrix cr is of full rank 2,

a2 al

. which is clearly the case. This, of course, implies that each and every
: modal control fr(t) is nonzero, in which case the application of the

controllability criterion is a trival formality. Note that an infinity

B
J
" of modal controls f.(t) is tantamount to an actual distributed control
X function f(P,t), as indicated by Eq. (5a).
Y Next, we assume that the modal states are related to the modal
' measurements y.(t) by
y(t) = Clx (t), r=1.2,... (10)
" where in the case of displacement measurements gl = (1 0] and in the
| ]
b case of velocity measurements QI = [0 1]. The modal observability
matrix is defined as
- T -
. Or = [gr Argrl’ r=12,... (11)
N and it permits us to state that the distribued system is modal-state
:j observable if and only if each and every observability matrix Or is of
. full rank 2. For displacement measurements
oo
0r = , r=1,2,... , (12a)
5 {p 1 .
and. for velocity measurements
0 -
Or = , r=1,2,... (12b)
B 0
' so that the system is in general observable with either displacement
; measurements or velocity measurements. Notable exceptions are semi

oL
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definite systems, which admit rigid-body modes with zero eigenvalues.
Indeed, semidefinite systems are not observable with velocity measure-
ments alone. Note that an infinity of modal displacement or modal
velocity observations imﬁlies distributed displacement measurement

w(P,t) or distributed velocity measurement w(P,t), respectively.

4. FEEDBACK CONTROL

Let us consider the distributed linear feedback control
f(P,t) = - S(P)w(P,t) - (P)w(P,t) (13)
where §(P) and ¥(P) are control gain operators. Inserting Eq. (13) into

Eq. (1), we obtain the closed-loop pde

L*w(P,t) +3(PYW(P,t) + m(P)w(P,t) = 0, PeD (14)
where

L*=L+5 (15)
is a closed-loop stiffness operator. Retracing the steps leading from

Eq. (1) to Egs. (6), we obtain the closed-loop modal equations, which

can be written in the compact form

q(t) + H4(t) + (a + G)g(t) = 0 (16)
where g(t) is the infinite-dimensional modal configuration vector, a is
the infinite-order diagonal matrix of eigenvalues and G and H are square
control gain matrices of infinite order with entries given by

9o = (005 50.)s b= (0., %0.), ros = 1,2,... (17a,b)

sr
In the general case, the matrices G and H are not diagonal, so that
the'effect of feedback control is to couple the modal equations.
Physically, the term gsrqr(t) implies a generalized spring force and the
term hsrdr(t) a generalized damping force. Hence, the fact that the

matrices G and H are not diagonal implies that the feedback control pro-

vides nonproportional stiffness and damping (Ref. 1), respectively. Wv
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refer to the case in which G and H are not diagonal as coupled modal

control. Note that in this case the matrices G and H may not be even
symmetric.

Before the behavior of the closed-Toop system can be established,
it is necessary to determine the gain operators § and ¥ or the gains
matrices G and H. However, there are no algorithms capable of producing
the operators § and & or the infinite-order matrices G and H. Hence,
distributed feedback control realized through coupled modal control is
not possible.

Next, we introduce the 2= -dimensional modal state vector x(t) =

0.
[gT(t); gT(t)]T, so that Eq. (16) can be rewritten in the state form

x(t) = Ax(t) (18)
where 1
|
0 !
A= [coopoood 20 (19)
—(92+ G)E -H

in which o = diag [wr]. The problem of determining the control gain
matrices G and H remains. In this regard, one can consider pole alloca-
tion and optimal control. In the pole allocation method, the problem
reduces to the solution of a set of nonlinear algebraic equations (Ref.
3), which is not feasible for infinite-dimensional systems. Similarly,
for optimal control using a quadratic performance index, one is faced
with the solution of a matrix Riccati equation of order 2=, which is not

possible.

5. INDEPENDENT MODAL-SPACE CONTROL

There is one special case in which distributed feedback control is
possible, namely the one in which the opera.ors & and & satisfy the

eigenvalue problems
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S6,.(P) = gm(P)e.(P), He (P) = hm(P)e.(P), r=1,2,... (20a,b)
which imply that S and #€ are such that

(¢S.5¢r) = ngrS.. (¢S,Jﬂ¢r) = hf‘dl"S, TyS = 1’2"" (21a9b)

In this case the closed-Toop modal equations reduce to the independent
set

ag(t) + hd(t) + (g + 9)a(t) =0, s = 1,2,... (22)
Because of the independence of the closed-loop modal equations, this

type of control is called independent modal-space control (IMSC). It is

characterized by modal control forces of the form
= - - 3 = (
f(t) 9,95(t) - haa (t), s=1,2,... (23)
In open-loop response problems, the coordinates qs(t) crrresponding

to independent equations of motion are called natural. Because IMSC

guarantees the independence of the closed-loop equations, we refer to

IMSC as natural control.

The fact that both the open-loop and closed-loop modal equations

are independent has very important implications. Indeed, this implies

that the open-loop eigenfunctions ¢, are closed-loop eigenfunctions as

well. Hence, in natural control, the control effort is directed

entirely to altering the eigenvalues, leaving the eigenfunctions

unaltered. In this regard, it should be recalled that the stability of
a linear system is determined by the system eigenvalues, with the
eigenfunctions playing no role, so that in natural control no control
effort is used unnece§sarj]y.

The question remaihs as to how to determine the modal gains g and
he (s = 1,2,...). Two of the most widely used techniques are pole

allocation and optimal controi:
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i. Pole allocation

In the polie allocation method, the closed-loop poles are selected
in advance and the gains are determined so as to produce these poles.
In the IMSC, the procedufe is exceedingly simple. Denoting the closed-
loop eigenvalue associated with the sth mode by o+ iss, the solution
of Egs. (22) can be written as

(—as + iBS)t
q.(t) = cee , S =1,2,... (24)

Inserting Eqs. (24) into Eqs. (22) and separating the real and imaginary

parts, we obtain the modal gains

_ 2 2 _ -
gS =ag * B - xs, hS = ZuS, s =1,2,... (25)

To guarantee asymptotic stability, however, it is only necessary to
impart the open-loop eigenvalues some negative real part and it is not
necessary to alter the frequencies. This can be achieved by letting

B = /X_= we (s=1,2,...), where, we is the sth natural frequency of

S s
the open-loop system. Hence, the frequency-preserving control gains are
- 2 - -
9 = ags hS = 2as, s =1,2,... (26)

ii. Optimal control

In optimal control, the closed-loop poles are determined by
minimizing a given performance index. Consistent with previous
developments, we are interested in constant gains and, to this end, we

consider the performance functional

= J'B’ [(w,mw) + (w, Lw) + (f,rf)]dt (27)
whefe the various quantities are as defined in Eq. (1), except for r =
r(P) which is a weighting function assumed to satisfy (Ref. 2)

. % g2
(F,rf) = rzl R.Fo (28)

where R. are modal weights. Inserting Eqgs. (4) and (28) into Eq. (27)

and recalling Eqs. (3), we obtain

]
F
s
;
;
)

.................... T AN AT, s, AT AT RS " TN N
{Lﬁ.ﬁhﬁ‘l‘;.fn.\ A L'\'( '. NN 1'-.1“.1‘;!’- . : c e e e e



2N RA TN %

LA S

[N

AN

o,
‘I

J = E J (29&)

where
_ore g2 22 2 _
J. = IO (a7 + woal + R FdL, r=1,2,... (29b)
are modal performance indices. Because in IMSC the modal control f. is
independent of any other modal control, it follows that

min J = min § J_ =
r=1 7

L minJ (30)
r=1
so that the minimization can be carried out independently for each mode.

The minimization of Jr leads to a 2x2 matrix Riccati equation that

can be solved in closed form (Ref. 4), yielding the modal control gains

2 2 ., ,-1\1/2
g.=-uw. + o (w +R_")
r r.orr r , r=1,.2,... (31)
- 2 .- 1
ho= (-2 + R+ 20 (uF 4 r-hyl/zy /e

Because no constraint has been imposed on the control function f =
f(P,t), the solution defined by Eqs. (5), (23) and (31) is globally
optimal, and is unique because the solution to the linear optimal
control probiem is unique (Ref. 5).

It should be pointed out that the solution presented above requires
distributed sensors and actuators. Indeed, inserting Egs. (23) into Eq.
(5a), we obtain the distributed feedback control force

'
w

fF(P,t) = - rzl m(P)@r(P)Igrqr(t) + hrqr(t)] (32)
Equétion (32) indicates, that control implementation requires the entire
infinity of modal displacements q.(t) and modal velocities dr(t)

(r = 1,2,...) for feedback. This, in turn, implies a distributed
sensor. Note that, inserting Eq. (4) into Eq. (13) and comparing th»

results with Eq. (32), we can verify Eqs. (20). At this point, we

11




observe that the gain operators § and ¥ are never determined explicitly,
nor is it necessary to do so, as the determination of the modal gains 9,
and h,. (r = 1,2,...) is sufficient to produce the feedback control

density function f(P,t);

6. CONTROL BY POINT ACTUATORS

As pointed out in Sec. 5, globally optimal control of a distributed
structure requires a distributed actuator. On the assumption that
distributed actuation is not feasible, we seek control by means of a
finite number p of discrete actuators acting at the points P = Py (1 =

1,2,...,p) of the structure. Discrete actuators can be treated as

distributed by writing
p
f(P,t) = ] Fi(t)s(P - P,), PeD (33)
i=1

where F;(t) are force amplitudes and s(P - Pi) are spatial Dirac delta
functions. Introducing Eq. (33) into Eq. (5b), we obtain the relaticn

between the modal forces and the actuator forces in the form
p

P
FE) = (o (PLLF(L0) = ] Fi(t) oo (Pho(P = Py)ad = [ o (P)F (),
r=1,2,... (34)
which can be written in the compact form
T(t) = oF(t) | (35)
where f(t) is the infinite-dimensional modal vector, ¢ is the =xp modal
par£icipat1on matrix and E(t) is the p-vector of actuator forces.
Considering the feedback control
F(t) = -Gg(t) - Hq(t) (36)
where this time G and H are p>= control gain matrices, the closed-loop

state equations can once again be written in the form (18), but this
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time the coefficient matrix is
e B R (37)
-(a~+ oG): -¢H
The difficulties cited<1ﬁ Sec. 4 in conjunction with the determination
of the gain matrices G and H remain. Some of these difficulties can be
reduced by controlling a finite number of modes. This raises the
question of control spiliover into the uncontrolled modes (Ref. 6),

particularly if the number of controlled modes is small.

7. DIRECT FEEDBACK CONTROL

One problem that can prove troublesome in modal control is the
estimation of the modal states for feedback. To this end, one can
consider a Luenberger observer (Ref. 7), but the question of observation
spillover is potentially more serious than the problem of control
spillover, as it can lead to instability (Ref. 6). Hence, a procedure
not requiring modal state estimation appears desirable.

One approach not requiring modal state estimation is direct
feedback control, whereby the sensors are collocated with the actuators
and a given actuator force is a linear function of the sensor output at
the same point. We consider p discrete actuators acting at the points
P =P, (i = 1,2,...,p), where the force amplitudes are

'F].(t) = -gw(P.,t) - how(P.,t), §=1,2,....p (38)
in which g; and hy (i = 1,2,...,p) are actual control gains. Clearly,
the.gains must be positive. As before, the discrete actuators can be

regarded as distributed by writing

p

f(P,t) = - '21 [g,w(P,t) + hiw(P,t)Ia(P - i)y PeD (39)
1=

13
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To make the connection with Eq. (13), we can regard S and 3 as operators
having the expressions
p ‘ p

S(P) = 121 g.6(P - P.), X(P) = 121 h.s(P - P.), PeD (40a,b)
so that, inserting Eqs. (40) into Egqs. (17), we obtain the entries of
the control gain matrices G and H in the explicit form

P P

Gy = izlgiebs(Pi)@r(Pi), hep = iglhi‘»s(’Pi)%(Pi), r,s, = 1,2,...(4la,b)
The state equations remain in the form (18) and the coefficient matrix A
remains in the form (19).

Once again the problem is that of determining the control gains.
The problem is different here because there is only a finife number of
gains g; and hy (i = 1,2,...,p) and the system is infinite-dimensional.
There is no computational algorithm permitting the computation of the
control gains in conjunction with either pole allocation or optimal
control, so that one must consider modal truncation. Even for the
truncated model, the situation remains questionable. The reason for
this is that pole allocation and optimal control most likely will
require gain matrices with entries independent of each other while
direct, feedback control implies that the entries of G and H are not
independent, as can be see from Eqs. (41). In fact, there is some
question whether arbifrary pole placement is possible for direct
feedback control. Moreéver, because the entries of G and H are not
independent, there is some question whether optimal control is possible

in the presence of constraints on the control gains.
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8. A PERTURBATION APPROACH TO POLE ALLOCATION FOR DIRECT FEEDBACK

Application of the pole allocation method to multi-input control
can cause serious difficulties. Moreover, the method is suitable for
discrete systems only.- in this section, we present an approach suitable
for distributed systems, and in the process we reveal some limitations
of the pole allocation method.

The eigenvalue problem corresponding to the closed-loop equation,
Eq. (18), is

Au = au (42)
where A is given by Eq. (19). We propose to determine the control gains
by a perturbation approach. To this end, we assume that A can be

expressed in the form

A= A0 + A1 (43)
where
' |
|
A= [0 I) A, = [900 (44a,b)
0 2] 1 —G | _H
-2°! 0 !

in which A; is "small" relative to Ay in some sense, so that the open-
loop matrix AO represents the unperturbed coefficient matrix and Al is
the perturbation due to closing of the loop.

The zero-order eigenvalue problem, i.e., the unperturbed open-loop
eigenvalue prob]em'is characterized by the eigenvalues XOj = 1wj
(j =1,2,...), where i = /-1 and o5 are the natural frequencies, and by

the'right and left eigenvectors

€. 1

u L [

e.
2l o, = 1,2,... (45a,b)

Vo: = 5
"'OJ 3 * “‘OJ 2 _ :
10585 (1/05)e;
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in which gj is a standard unit vector. The two sets of eigenvectors

. . . . T _ T o
satisfy the biorthonormality relations !0k90j = ij’ YOkAOEOj = 1“jdjk

(J,k = 1,2,...). Equations (45) specify only one half of the right and

left eigenvectors. The other half consists of the complex conjugates Yo j
and ij corresponding to the eigenvalue -iwj. Then, the first-order
perturbation solution of Eq. (42) can be expressed as (Ref. 8)

As = A

3 0] + Aqe = wy + klj’ u, = 90j + Elj , j=1,2,... (46a,b)

1j h J
where

T 2 (Yohyto;
M3 7 YoM 1y T 4 \%g5 - 2o S0k’

|

j=12,...; k= j (47a,b)

Inserting Eqs. (45) into Eq. (47a), we obtain
1‘

_ T T 5.
llj = §;3 gj (G + 1ij)gj, j=1,2,... (48)
so that p
1.7 1 1 2 .
L= - == = e = ee = = = N P Y = 9l geee 4
Re 5 2 &4fiey 2 i 5 izl hie(P3)s = 1,2 (49a)

=L elge. = 1 oL 2 i =
Imayy = 3,7 @085 = s 955 = Za; by 9i¢3(P)s 37 LZeee (499)
J J j i=1
Introducing the notation
= ; 2 _
llj = - ay + 1ij . ¢j(Pi) = bji (50a,b)
Eqs. (49) can be rewritten as
p v p
! L3 . = . .. » = 3 L) .= ,2,... : ]
121 byihy = 205, izl b3191 20 805, ] 1 (51a,b)

Equations (51) represent two infinite sets of algebraic equations.
Because thé two sets ;ré similar in nature, we confine our discussion to
Eqs. (5la). We note from Egs. (50b) that all bji (i =1,2,...,p3 J =
1,2,...) are positive. If the gains h; (i =1,2,...,p) are selected in

advance, and if we recall that they must be positive, we conclude that

16
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all uj(j =1,2,...) are positive, which guarantees that, to the first

approximation, direct feedback leads to asymptotic stability.

In pole placement, however, the closed-loop poles rather than the
gains are selected in aavance. If all the poles are to be placed, which
implies that all “j(j = 1,2,...) must be selected in advance, then Egs.
(51a) represent an infinite set of equations and p unknowns, namely h;
(i =1,2,...,p). Clearly, no solution is possible, so that we consider
placing only a finite number of poles. Physically, this presents no
problem as higher modes are seldom excited. In general, the object is
to place a larger number of poles than the number p of actuators.

Hence, let us assume that we wish to place the first n poles, n > p, and
write Eqs. (5la) in the matrix form

Bh = 2a (52)
where B is an nxp matrix, h is the p-dimensional gain vector and o is
the n-dimensional vector of preselected pole shifts along the real axis.
A Teast-squares solution of Eq. (52) yields

h = 287, 8" = (87B) 18" (53a,b)
where BJr is the pseudo-inverse of B. Then, the shifts of the remaining
poles along the real axis can be obtained from Egs. (5la) corresponding
toj=n+1,n+2,.... For stability, aj(j =n+1, n+ 2,...) must
all be nonnegative.

The fact that all oy (j=n+1,n+2,...) must be nonnegative
implies that all the gain; hy (i = 1,2,...,p) must te positive. Indeed,
if some hi‘are negati?e; then the left sides of Egqs. (5la) corresponding
to j > n represent indefinite forms, so that some a5 j > n, can be
negative, which implies destabilization of some of the higer modes.

Yet, the solution (53a) cannot guarantee that all the components of h
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are positive for any choice of a. It follows that in direct feedback

control the poles cannot be placed arbitrarily. This fact can be ex-

plained easily if we recognize that direct feedback is a special type of
control in which a given.actuator force depends only on the state at the
same location, as expressed by Eqs. (38). As a result, the gain matrix
contains no cross-products. The zero entries in the gain matrix can be
regarded as constraints on the control, limiting the freedom to choose

the poles. Hence, direct feedback control and pole allocation are

incompatible.
It must be stressed that the difficulties encountered above do not

exist when the control gains are selected first and the closed-loop

poles are computed subsequently, so that the problem lies not with

direct feedback control but with pole allocation used in conjunction

with direct feedback to control a reduced number of modes.

The question remains as to whether the incompatibility between
direct feedback and pole allocation is caused by the perturbation
technique or is more endemic in nature. We address this question later

in this paper.

9. SECOND-ORDER PERTURBATION EFFECTS

The analysis of Sec. 8 was based on Tinear approximation. In
realif&, the poles are likely to differ from the ones based on the
first-order approximaton, but fhe question is whether the difference is
sigﬁificant. To explore this question, we turn to the second-order

perturbation in the closed-loop poles. It can be shown that the second-

order perturbation in the eigenvalues has the form (Ref. 8)
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From Eqs. (55a), it appears that some Re A2j can be positive. Because
Re k2j involves only off-diagonal entries of the modal gain matrices G
and H, however, it is not likely to exceed ay in magnitude, so that in
general stability is not really threatened. Moreover, if the control
does not involve displacement feedback, then all Re XZj are zero.
Hence, a second-order perturbation solution is not expected to be
signiﬂicant]y different from the first-order solution.

A similar analysis can be carried out in conjunction with Eqs. (55b).
For.positive definite structures, suqh an analysis is not very signifi-
cant, as it involves bniy the imaginary part of the closed-Toop poles,
which does not affect the structure stability. For positive semidefi-

nite systems, however, the open-loop poles associated with the rigid-

body modes are zero, so that the rigid-body modes are not controllable
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with velocity feedback alone. Still, because Eqs. (55b) are concerned
only with the imaginary part of the eigenvalues, the conclusion involving
the nature of the second-order perturbation solution remains the same.
From the above diséﬁssion, we must conclude that the incompati-
bility between direct feedback control and pole placment for control of
distributed structures has deeper roots and is not merely caused by the

perturbation approach.

10. NUMERICAL EXAMPLE

Let us consider the problem of controlling the cantilever beam

shown in Fig. 1 by means of three equally-spaced actuators, x; = iL/3

i
(1 = 1,2,3). The eigenfunctions are given by (Ref. 1)

sin s L - sinh BrL

cos 8. L + cosh B L

¢r(x) = Ar[cos B.X - cosh B.X + (sin B.X - sinh srx)],

r=1,2,... (56)

where srL are the roots of the characteristic equation cos BrL cosh BrL

2

= -1. Normalizing the eigenfunctions so that fé me.. dx = 1, we cobtain

Aq = 0.99803 m1/2, A, = 0.99803 m1/2, A5 = 0.99802 m~1/2, A, = 1.0230
m‘l/z, A5 1.0177 m'l/2 A6 1.0143 m‘l/2 ... Moreover, the roots
of the characteristic equation are le = 1,87510, aZL = 4,69409,

B,L = 7.85476, 84 = 10.99550, 8.L = 14.13720, 86L = 17.27879, ..., and

B3 5
note that as the mode number increases the roots approach odd multiples

of n/2.

Letting r = 3 and using Eq. (50b), we obtain the matrix
0.1092 0.1192 x 10 0.3984 x 10
B=ml [0.1385 « 10 0.7119 0.3984 x 10 (57)

0.2076 x 10 0.1651 x 10 0.3984 x 10

o Wy T
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so that, from Eq. (53a), we obtain the control gains

>
)

{ = (-1.2274 oy + 0.6000 o
= (0.9036 o; - 2.5720 o
= (0.2654 o

+ 0.6276 ag)m
+ 1.6686 ag)m (58)

2
2

1 2
It is clear that, because the gains must be positive, the poles cannot

+ 0.7530 o, - 0.5164 u3)m

be placed arbitrarily. We recall that aj, ap and «3 must also be posi-

tive. To develop a feel for the restrictions on the pole placement, let
us imagine a three-dimensional space defined by aj, a2 and a3. The pole
shifts must be such that o] > 0, a2 > 0 and ag > 0, which restricts the
placement to the positive one eighth of the three-dimensional space.
Then, we consider a typical equation from the set (58) and write it in
the form

h = aa; + ba, + Cay (59)
For h = 0, Eq. (59) represents a plane through the origin of the three-
dimensional space aj, a2, «3. Hence, the inequality h > 0 implies that
the acceptable points lie in one half of the space. Denoting by SO the
space defined by oy >0, ay > 0 and «3 > 0 and by Sl the space
corresponding to h > 0, we conclude that the closed-loop poles must be
such that aj, ap and «3 1ie in the intersection of Sg and §;. In our

case, there are three inequalities, h; > 0 (i = 1,2,3), to be satisfied.

;
Denoting the associated spaces by S; (i = 1,2,3), we conclude that ay
a2 and a3 must lie in the intersection of the spaces Sg» S1s S, and
S3.. This intersectiop defines a cone with the vertex at the origin of
the space 41, a2, a3 (%19. 2). MWhereas this region may provide many

choices, it is obvious that a choice of a)s @, and o cannot be made

arbitrarily. In fact, it can be verified by inspecting Eqs. (58) that

it is very easy to choose values of s Ay and ag such that hl' h2, or
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h3 becomes negative. The reason for this is that the cone has a narrow
base. For values of aps 9y and ag corresponding to points lying outside
the cone, the first three modes are asymptotically stable, but some of
the higher modes are 11ké1y to be destablized.

As an illustration of the case in which arbitrarily chosen poles
destabilize the higher modes, let us consider the shifts in the first

three poles

ay = 3a, a, = 2a, oy = o (60)
Inserting Eqs. (60) into Eqs. (58), we obtain the control gains
hy = -1.8546 am, hy = ~-0.7646 am, hs = 1.7858 am (61)

To determine the shift in the poles 4,5 and 6, we refer to Eq. (50b) and

compute
b, =0.1605m L, b, = 0.1405 m'!, b, = 1.046 m™!
41 ) V4 ’ * 743 :
_ -1 _ -1 _ -1
b51 = 1.017 m™°, b52 = 1.036 m ~, b53 =1.036 m (62)
_ -1 _ -1 _ -1
b61 =191l m ", b62 = 1.920 m °, b63 = 1.029 m
Then, inserting Eqs. (61) and (62) into Egs. (5la), we obtain
a, = 2.9257 a, ag = -1.6563 «, ag = -6.3490 « (63)

so that modes 5 and 6 are destablized by the choice (60).

One suitable choice, i.e. one lying inside the cone, is that in
which the shifts in the first three poles are

8 = as a, = 2a, ag = 3a (64)

In this case, the control gains become

h1 = 1.8551 am, h, = 0.7651 am, h, = 0.2223 am (65)

2 3
Because h; > 0 (i = 1,2;3), it follows from Egs. (5la) that all the
expressions on the left side represent positive definite quadratic
forms, so that all the closed-loop poles are shifted to the left of the

jmaginary axis. Inserting Eqs. (64) and (65) into Egs. (5la), we obtain

l‘.".' \f"fq' &
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ay = 0.3190 a« , ag = 1.4547 o , ag = 2.6212 o (66)
indicating that now the modes 4, 5 and 6 are damped adequately in
comparison to the first three modes.

It will prove of iﬁterest to examine the accuracy of the pole-
placement technique based on the perturbation scheme. To this end, we
propose to solve the closed-loop eigenvalue problem for the successful
choice, i.e., for the case in which the gains are given by Eqs. (65).
Because the solution of the eigenvalue problem is strictly a numerical
problem, we must assign values to the system parameters. For
convenience, we choose a =1, m=1, EI =1, L = 1, where EI is the

bending stiffness. Using Egs. (41b), in conjunction with the gains

given by Eqs. (65), we obtain

r2.0000 0.5407 0.6956 0.1049 0.6833 -2.4547
4.0000 1.4311 1.5707 -1.9965 -3.4627
H = 6.0000 0.2487 -3.2446 -2.7830 (67)

0.6379 -0.6891 -1.1943
symm. 2.9093 1.2780
i 5.242QJ

On the other hand, because we are only using velocity feedback, G = O.

Moreover, the matrix of natural frequencies is

a = diag[3.516 22.034 61.697 120.901 199.860 298.557] (68)
The eigensolution was obtained by truncating A to a 4x4, a 5x5
and a 6x6 matrix. The corresponding closed-loop eigenvalues are dis-
played in Table I. Comparing the values in Eqs. (64) and (66) with the
cor}esponding ones in“Table I, we conclude that the results cbtained by
the perturbation approach are accurate to the fourth significant figure.
[t is also easy to verify that truncation of the matrix A does not
affect the eigenvalues materially. Hence, the perturbation approach to

the computation of the control gains for pole allocation in conjunction
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with direct feedback control gives sufficiently accurate results, at

least in this particular example.

11. CONCLUSIONS

Control of distributed structures requires distributed actuators
and sensors. Practical considerations dictate that control implemen-
tation be carried out by means of discrete actuators and sensors.
Moreover, it is impossible to control or estimate the entire infinity of
modes, so that control must be limited to a finite number of modes.
Problems of modal control and estimation remain when the natural
frequencies are closely spaced, as is often the case with two- and
three-dimensional structures.

One approach not requiring modal state estimaton is direct feedback
control, in which an actuator at a given point of a structure generates
a force input depending on the sensor output at the same point. For
linear control, the gain matrix consists of two diagonal submatrices.
The question remains as to how to produce the control gains. Two widely
used techniques are pole allocation and optimal control. The diagonal
nature of the gain matrix characterizing direct feedback control is
likely to cause difficulties.

In the pole allocation method, the closed-loop poles are selected
first and the gainsrmatching these poies are computed subsequently.
There are two factors that may.limit the freedom to choose closed-loop
po]és in direct feedbdck. In the first place, the gain matrix has a
special nature, characterized by the off-diagonal entries being equal to
zero, which can be intepreted as placing constraints on the gains. In

the second place, the control gains must be such that the uncontrolled
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modes are not destabilized. We recall that for a distributed structure
there are always uncontrolled modes.
d This paper develops a perturbation approach to the computation of
{ control gains corresponding to given closed-Toop poles, whereby in the
s first approximation the problem reduces to the solution of linear
) algebraic equations for the control gains. The approach reveals an
inherent difficulty in the use of pole placement in conjunction with

direct feedback control. In particular, whereas in computing gains for

a discrete system in which all the modes are controlled the problem can

e« aa"®R R 8

be regarded as solved provided controllability is satisfied, here the
gains are constrained by the requirement that the higher modes not be
destabilized. This can be guaranteed by requiring that all the gains be
positive. Hence, physical considerations dictate that the only admis-
sible solutions of the algebraic equations for the control gains are
those in which all the components of the solution vector are positive.

y Because this cannot be guaranteed for any preselected closed-loop poles,
it follows that the closed-loop poles cannot be chosen arbitrarily. If

we envision a space defined by the real part of the closed-loop pales,

Pt Sl e

then the admissible controls 1ie in a certain cone-shaped subregion of
constraint of that space.

The question can be raised as to whether it is possible to draw
such sweeping conclusions from a first-order pefturbation analysis. The
answer must be affirm@tivg. Indeed, for small real parts of the closed-
loop poles; the first-o%der perturbation yields accurate results. As
: the real parts increase in magnitude, the constraints on the control
gains remain, so that the nature of the problem does not change. The

likely outcome of a higher-order perturbation is to affect the bounda-
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ries of the cone of constraint, in the sense that the boundaries becom:
curved surfaces tangent to the hyperplanes of constraint at the origin,
but cannot negate the existence of such subdomains of constraint. It
should be pointed out that, in the absence of displacement feedback, a
second-order perturbation does not affect the real parts of the eigen-
values.

The ideas presented in this paper are demonstrated via a numerical
example in which an attempt is made to control a cantilever beam by
means of three point actuators while placing three poles. Placing the
poles so that the real parts lie outisde the cone of constraint yields
instability, thus showing that poles cannot be placed arbitrarily. On
the other hand, placing the poles so that the real parts lie inside the
cone yields stability. Then, using the computed gains to generate the
matrix of coefficients A, the closed-loop eigenvalue problem corres-
ponding to the stable case is solved "exactly," {.e., without the use of
a perturbation analysis. The first six computed eigenvalues agree to
the fourth significant figure with those achieved by the perturbation

approach to pole placement.
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" TABLE I - Closed-Loop Eigenvalues from Truncated A
!
A is 4x4 A is 5x5 A is 6x6

E r Re e Im A Re A Im A Re A Im A
. 1 -1.00068 + 3.37175 -1.00071 + 3.37173 -1.00075 + 3.37175
1 2 -2.00108 +21.94475 -2.00113 +21.94574 -2.00141 $21.94696
. 3 -2.99873 t61.59982 -2.99991 +61.60840 = -3.00046 $61.61201
3 4 -0.31851 +120.88660 -0.31857 £120.88730 -0.31889 +120.88810
5 s, ©-1.45320 £199.80580 -1.45360  +199.80940

6 -2.61968  +298.48120
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List of Figures

1. Figure 1 - A Cantilever Beam Controlled by Three Actuators

2. Figure 2 - Region of Admissible Controls
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Fig. 1 A Cantilever Beam Controlled by Three Actuators

Fig. 2 Region of Admissible Controls
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